Discriminative kernel-based phoneme sequence recognition

نویسندگان

  • Joseph Keshet
  • Shai Shalev-Shwartz
  • Samy Bengio
  • Yoram Singer
  • Dan Chazan
چکیده

We describe a new method for phoneme sequence recognition given a speech utterance, which is not based on the HMM. In contrast to HMM-based approaches, our method uses a discriminative kernel-based training procedure in which the learning process is tailored to the goal of minimizing the Levenshtein distance between the predicted phoneme sequence and the correct sequence. The phoneme sequence predictor is devised by mapping the speech utterance along with a proposed phoneme sequence to a vectorspace endowed with an inner-product that is realized by a Mercer kernel. Building on large margin techniques for predicting whole sequences, we are able to devise a learning algorithm which distills to separating the correct phoneme sequence from all other sequences. We describe an iterative algorithm for learning the phoneme sequence recognizer and further describe an efficient implementation of it. We present initial encouraging experimental results with the TIMIT and compare the proposed method to an HMM-based approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

A Discriminative Decoder for the Recognition of Phoneme Sequences

In this report, we propose a discriminative decoder for the recognition of phoneme sequences, i.e. the identification of the uttered phoneme sequence from a speech recording. This task is solved as a 3 step process: a phoneme classifier first classifies each accoustic frame, then temporal consistency features (TCF) are extracted from the phoneme classifier outputs, and finally a sequence decode...

متن کامل

Essv 2012 C Ontinuous Speech Recognition Using C Orrelation Features and Structured Svm Probability Output

One potential area for improvement in continuous speech recognition is the modelling of phoneme transitions (not transition probabilties) arising from the non-stationarity of speech: refined models can then be used to compute probability distributions which can serve as emission probabilities for HMM-based speech recognition systems. In this paper we present our approach to improving phoneme tr...

متن کامل

Large Margin Algorithms for Discriminative Continuous Speech Recognition

Automatic speech recognition has long been a considered dream. While ASR does work today, and it is commercially available, it is extremely sensitive to noise, talker variations, and environments. The current state-of-the-art automatic speech recognizers are based on generative models that capture some temporal dependencies such as hidden Markov models (HMMs). While HMMs have been immensely imp...

متن کامل

Designing a Speaker-discrim Filter Bank for Speake

A new filter bank approach for speaker recognition front-end is proposed. The conventional mel-scaled filter bank is replaced with a speaker-discriminative filter bank. Filter bank is selected from a library in adaptive basis, based on the broad phoneme class of the input frame. Each phoneme class is associated with its own filter bank. Each filter bank is designed in a way that emphasizes disc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006